In vivo protein crystallization in combination with highly brilliant radiation sources offers novel opportunities for the structural analysis of post-translationally modified eukaryotic proteins.
نویسندگان
چکیده
During the last decade, the number of three-dimensional structures solved by X-ray crystallography has increased dramatically. By 2014, it had crossed the landmark of 100 000 biomolecular structures deposited in the Protein Data Bank. This tremendous increase in successfully crystallized proteins is primarily owing to improvements in cloning strategies, the automation of the crystallization process and new innovative approaches to monitor crystallization. However, these improvements are mainly restricted to soluble proteins, while the crystallization and structural analysis of membrane proteins or proteins that undergo major post-translational modifications remains challenging. In addition, the need for relatively large crystals for conventional X-ray crystallography usually prevents the analysis of dynamic processes within cells. Thus, the advent of high-brilliance synchrotron and X-ray free-electron laser (XFEL) sources and the establishment of serial crystallography (SFX) have opened new avenues in structural analysis using crystals that were formerly unusable. The successful structure elucidation of cathepsin B, accomplished by the use of microcrystals obtained by in vivo crystallization in baculovirus-infected Sf9 insect cells, clearly proved that crystals grown intracellularly are very well suited for X-ray analysis. Here, methods by which in vivo crystals can be obtained, isolated and used for structural analysis by novel highly brilliant XFEL and synchrotron-radiation sources are summarized and discussed.
منابع مشابه
A Novel Vector for Expression/Secretion of Properly Folded Eukaryotic Proteins: a Comparative Study on Cytoplasmic and Periplasmic Expression of Human Epidermal Growth Factor in E. coli
Expression of eukaryotic proteins in E. coli often results in their aggregation. Proper folding and solubility of therapeutical proteins are the pre-requisite for their bioactivity. This is not achieved in cytoplasmic expression in E. coli because of the absence of disulfide bonds formation. A novel expression/secretion vector was constructed which exploited β-lactamase signal sequence to trans...
متن کاملReal-time investigation of dynamic protein crystallization in living cells.
X-ray crystallography requires sufficiently large crystals to obtain structural insights at atomic resolution, routinely obtained in vitro by time-consuming screening. Recently, successful data collection was reported from protein microcrystals grown within living cells using highly brilliant free-electron laser and third-generation synchrotron radiation. Here, we analyzed in vivo crystal growt...
متن کاملEasy mammalian expression and crystallography of maltose-binding protein-fused human proteins
We present a strategy to obtain milligrams of highly post-translationally modified eukaryotic proteins, transiently expressed in mammalian cells as rigid or cleavable fusions with a mammalianized version of bacterial maltose-binding protein (mMBP). This variant was engineered to combine mutations that enhance MBP solubility and affinity purification, as well as provide crystal-packing interacti...
متن کاملO-5: Identification of Novel ImmunodominantEpididymal Sperm Proteins Using CombinatorialApproach
Background: Alteration in the protein signatures of functionally immature testicular spermatozoa occurs during their journey through the epididymis. This leads to acquisition of sperm domain specific functions essential for successful fertilization. Epididymal sperm proteins are preferred targets for immunocontraception as well as in elucidating the causes of infertility. The Background of the ...
متن کاملمقایسه مقادیر پروتئینهای سطحی کاندیدا با استفاده از رنگ آمیزی نقره، کوماسی بلو و مخلوط هر دو رنگ و مشاهده باندهای مربوطه با استفاده از روش SDS-PAGE
Background and Aim: Candida species are among the most common causes of opportunistic fungal diseases. Among Candida species, Candida albicans is responsible for most infections. Having many strains, C.albicans is highly polymorph. C. dubliniensis is very similar to albicans species both morphologically and physiologically. For an infection to occur, cell wall proteins play an important role as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section F, Structural biology communications
دوره 71 Pt 8 شماره
صفحات -
تاریخ انتشار 2015